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Multi-model Combination of Forecasts

A linear multi-model combination is

y(t) = x1(t)β1 + x2(t)β2 + · · ·+ xM(t)βM + µ+ ε(t)

y(t): predictand

xm(t): prediction by model m

βm: model weight for model m
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Potential Strategies for Specifying Weights

I Linear Regression “Super-ensemble” (Krishnamurti et al. 1999)

I overfitting becomes a problem for large number of models M
I weights vary substantially on short space scales

I Ridge regression (Peña and van den Dool 2008)

I Multi-Model Mean (βm = 1/M)

I Bayesian (Rajagopalan et al. 2002)

I weighting coefficients become noisy as more models included
I neighboring grid points have very different coefficients

I Bayesian (DelSole 2007)

I Nested cross validation could not beat multi-model average
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Objective

Many studies show that the multi-model mean (βm = 1/M) gives
the best, or close to the best, forecast.

Multi-model mean is a special case of equal weights:

β1 = β2 = · · · = βM = α/M

We want to test whether a multi-model combination based
on unequal weights has significantly smaller errors than a

combination based on equal weights.
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Test Hypothesis of Equal Weights

y(t) = x1(t)β1 + x2(t)β2 + · · ·+ xM(t)βM + µ+ ε(t)

HSMMM : β1 = β2 = · · · = βM = α/M

where “SMMM” stands for “scaled multi-model mean.”

The statistic for testing this hypothesis is

F =
SSESMMM − SSEGLM

SSEGLM

N −M − 1

M − 1

SSESMMM : sum square error of regression model under HSMMM

SSEGLM : sum square error of model with least squares weights

Large F value favors a rejection of the hypothesis.
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Rejection of the Hypothesis of Equal Weights

The hypothesis is

HSMMM : β1 = β2 = · · · = βM = α/M

All that is required to reject HSMMM is

βi 6= βj for at least one i 6= j

This could happen in a variety of ways:

I one model has no skill (βm = 0 for some m).

I some subset of models have no skill.
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How Much Smaller Variance Does GLM Need to Explain
to Reject Hypothesis of Equal Weights ?

R2
GLM : Fraction of variance explained by GLM.

R2
SMMM : Fraction of variance explained by SMMM.

A relative measure of the difference in variances is:

δ =
R2
GLM − R2

SMMM

1− R2
SMMM

.

F =
δ

1− δ
N −M − 1

M − 1
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δ Values Required to Satisfy 5% Significance Test
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Schematic of the Proposed Decision Procedure

yn = β1xn1 + β2xn2 + · · ·+ βMxnM + µ+ ǫn,

TEST β1 = β2 = · · · = βM =
α

M
Unequal Weights

Reject

yn = α
1

M
(xn1 + xn2 + · · ·+ xnM) + µ+ ǫ.

Accept

Test α = 0 Test α = 1

Accept α = 1 Reject α = 1
Accept α = 0 Ambiguous Clim
Reject α = 0 MMM SMMM
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Test Hypothesis that Weights Vanish Simultaneously

y(t) =
α

M
(x1(t) + x2(t) + · · ·+ xM(t)) + µ+ ε(t)

HCLIM : α = 0

where “CLIM” stands for “climatology.”

The statistic for testing this hypothesis is

F =
SSECLIM − SSESMMM

SSESMMM

N − 2

1

SSECLIM : sum square error of regression model under HCLIM
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Rejection of the Hypothesis HCLIM

All that is required to reject HCLIM is

βi 6= 0 for at least one i

This could happen in a variety of ways:

I only one model has skill (βm 6= 0 for some m).

I all models should be equally weighted (α = 1).
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Test Hypothesis that All Weights Equal 1/M

y(t) =
α

M
(x1(t) + x2(t) + · · ·+ xM(t)) + µ+ ε(t)

HMMM : α = 1

where “MMM” stands for “multi-model mean.”

The statistic for testing this hypothesis is

F =
SSEMMM − SSESMMM

SSESMMM

N − 2

1

SSEMMM : sum square error of regression model under HMMM
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Application to Seasonal Hindcasts

I ENSEMBLES data set (Weisheimer et al., 2009)
I UK Met
I Météo France
I ECMWF
I Leibniz Institute of Marine Sciences at Kiel University
I Euro-mediterranean Centre for Climate Change in Bologna

I 9 member ensemble

I consider only hindcasts initialized 1 May and 1 November

I 46 year period 1960-2005

I NDJ and MJJ mean 2m temperature and precipitation

I 2m temperature verified against NCEP/NCAR reanalysis

I precipitation verified against NCEP/CPC (Chen et al. 2002)
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Selected Strategies for 2m Temperature

 T2m (NDJ ) 

 

 
T2m (MJJ) 

Clim SMMM  MMM  UEW

I Equal weights can not be rejected over 3/4 of the globe.

I Multi-model mean is the dominant choice.
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Selected Strategies for Precipitation

Precip (NDJ) 

 

 
Precip (MJJ) 

Clim SMMM  MMM  UEW

I Equal weights can not be rejected over 90% of the land.

I Vanishing weights is the dominant choice.
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IRI Plume

I Apply tests to hindcasts of 3-month average NINO3.4

I 28-29 years of data (1982-2010).

I 5-15 ensemble members, depending on lead

I Test for each initial month and lead.
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Selected Strategies for IRI Plume

I For short lead time, unequal weights is the dominant choice.
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Summary

I We proposed statistical test for whether a multi-model combination
with unequal weights has significantly smaller errors than a
combination with equal weights.

I If hypothesis of equal weights is rejected, this test gives no
information about the best strategy for unequal weighting.

I Equal weights could not be rejected over three-quarters of the globe
for T2m, and 90% for land precipitation.

I For equal weighting, multi-model mean was the dominant choice for
T2m, and vanishing weights for precipitation.

I For IRI plume, unequal weighting was selected mostly for short
leads, presumably because models are distinguishable at high skill.

I For IRI plume, climatology is not selected.
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